Bee Venom Used to Kill HIV Cells

Bee Venom Kills HIV: Nanoparticles Carrying Toxin Shown To Destroy Human Immunodeficiency Virus

The Huffington Post  |  By  Posted: 03/09/2013 11:02 am EST  |  Updated: 03/12/2013 12:07 am EDT

Bee Venom Kills Hiv

Can bee venom help combat HIV? According to one new study, it can.

A new study has shown that bee venom can kill the human immunodeficiency virus (HIV).

Researchers at Washington University School of Medicine in St. Louis have demonstrated that a toxin called melittin found in bee venom can destroy HIV by poking holes in the envelope surrounding the virus, according to a news release sent out by Washington University.

Visit Washington University’s website to read more about the study.

Nanoparticles smaller than HIV were infused with the bee venom toxin, explains U.S. News & World Report. A “protective bumper” was added to the nanoparticle’s surface, allowing it to bounce off normal cells and leave them intact. Normal cells are larger than HIV, so the nanoparticles target HIV, which is so small it fits between the bumpers.

“Melittin on the nanoparticles fuses with the viral envelope,” said research instructor Joshua L. Hood, MD, PhD, via the news release. “The melittin forms little pore-like attack complexes and ruptures the envelope, stripping it off the virus.” Adding, “We are attacking an inherent physical property of HIV. Theoretically, there isn’t any way for the virus to adapt to that. The virus has to have a protective coat, a double-layered membrane that covers the virus.”

This revelation can lead to the development of a vaginal gel to prevent the spread of HIV and, it seems, an intravenous treatment to help those already infected. “Our hope is that in places where HIV is running rampant, people could use this gel as a preventive measure to stop the initial infection,” said Hood.

The bee venom HIV study was published on Thursday in the journal Antiviral Therapy, according to U.S. News & World Report.

This study comes on the heels of news that a Mississippi baby with HIV has apparently been cured. The mother was diagnosed with HIV during labor and the baby received a three-drug treatment just 30 hours after birth, before tests confirmed the infant was infected. The child, now 2 years old, has been off medication for about a year and shows no sign of infection.

More than 34 million people are living with HIV/AIDS worldwide, according to amFAR, The Foundation for AIDS Research. Of these, 3.3 million are under the age of 15 years old. Each day, almost 7,000 people contract HIV around the globe.

Advertisements

Good News on the HIV Research Front

Protein that destroys HIV discovered

August 23, 2010

HIV virus

Loyola University researchers have identified the key components of a protein called TRIM5a that destroys HIV in rhesus monkeys.

The finding could lead to new TRIM5a-based treatments that would knock out HIV in humans, said senior researcher Edward M. Campbell, PhD, of Loyola University Health System.

Campbell and colleagues report their findings in an article featured on the cover of the Sept. 15, 2010 issue of the journal Virology, now available online.

In 2004, other researchers reported that TRIM5a protects rhesus monkeys from HIV. The TRIM5a protein first latches on to a HIV virus, then other TRIM5a proteins gang up and destroy the virus.

Humans also have TRIM5a, but while the human version of TRIM5a protects against some viruses, it does not protect against HIV.

Researchers hope to turn TRIM5a into an effective therapeutic agent. But first they need to identify the components in TRIM5a that enable the protein to destroy viruses. “Scientists have been trying to develop antiviral therapies for only about 75 years,” Campbell said. “Evolution has been playing this game for millions of years, and it has identified a point of intervention that we still know very little about.”

TRIM5a consists of nearly 500 amino acid subunits. Loyola researchers have identified six 6 individual amino acids, located in a previously little-studied region of the TRIM5a protein, that are critical in the ability of the protein to inhibit viral infection. When these amino acids were altered in human cells, TRIM5a lost its ability to block HIV-1 infection. (The research was done on cell cultures; no rhesus monkeys were used in the study.)

By continuing to narrow their search, researchers hope to identify an amino acid, or combination of amino acids, that enable TRIM5a to destroy HIV. Once these critical amino acids are identified, it might be possible to genetically engineer TRIM5a to make it more effective in humans. Moreover, a better understanding of the underlying mechanism of action might enable the development of drugs that mimic TRIM5a action, Campbell said.

In their research, scientists used Loyola’s wide-field “deconvolution” microscope to observe how the amino acids they identified altered the behavior of TRIM5a. They attached fluorescent proteins to TRIM5a to, in effect, make it glow. In current studies, researchers are fluorescently labeling individual HIV viruses and measuring the microscopic interactions between HIV and TRIM5a.

More info: Loyola University Health System news

A shout out to the people at Loyola University Health Systems for all their work!